Issue 8, 2012

Novel Claycunbic to eliminate micropollutants and Vibrio fischeri from water

Abstract

Montmorillonite clay (K10) was used as a precursor for the synthesis of a catalytic adsorbent, Claycunbic (Bi/Cu-pillared K10), which was characterized by SEM (EDS), TEM, XRD, BET, TGA and XPS analysis. The catalytic adsorption of cationic dye methylene blue (MB), anionic dye methyl orange (MO) and halogenated aromatic dichlorophenol (DCP) was assessed through multivariate experimental design. The adsorption kinetics was interpreted using pseudo-first order kinetics and an intra-particle diffusion model. It was found that the highest MB, MO and DCP removal efficiency was achieved with 0.5 mL and 1 mL hydrogen peroxide and 1 mg L−1 catalyst doses, respectively. Decrease in 95, 40 and 75% of TOC was observed for MB, MO and DCP, respectively. Bacterial (Vibrio fischeri) bioluminescence inhibition assay showed that inhibition of growth increased from 20 to 100%, with an increase in Claycunbic concentration from 10 to 2000 mg L−1 indicating applicability not only for the removal of organic but bacterial contamination as well. Claycunbic exhibited excellent stability up to 5 consecutive runs in terms of degradation of MB (100–88%) and regained nearly 100% catalytic activity after intermediate calcination at 400 °C for 2 h.

Graphical abstract: Novel Claycunbic to eliminate micropollutants and Vibrio fischeri from water

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2011
Accepted
26 Jan 2012
First published
28 Feb 2012

RSC Adv., 2012,2, 3416-3422

Novel Claycunbic to eliminate micropollutants and Vibrio fischeri from water

J. Virkutyte and R. S. Varma, RSC Adv., 2012, 2, 3416 DOI: 10.1039/C2RA01088G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements