Nanoscale assembly, morphology and screening effects in nanorods of newly synthesized substituted pentacenes
Abstract
We report our investigation on the nanorods of two newly synthesized substituted pentacenes, δ4-substituted (2,3-X2-9,10-Y2) pentacene with X = Y = methoxy group (MOP) and X = F, Y = methoxy (MOPF), by using X-ray photoemission spectroscopy (XPS), near edge X-ray absorption fine structure (NEXAFS), and atomic force microscopy (AFM). The nanorods were deposited on Au(111) single crystals. Energy dependent photoemission spectra show complex features, including a rich satellite structure that we have analyzed in detail by using a best-fit procedure applying constraints based on stoichiometry, electronegativity, and bond strength. This analysis reveals the presence of surface core level shifts due to the high electronegativity of the fluorine atoms. The distinctive features of growth and morphology of the nanorods are subjected to a template effect by the substrate lattice geometry, leading to morphological well-organized assemblies. Fluorine atoms play an important role not only in the electronic structure but also in the morphology of the nanorod assemblies.