Issue 23, 2012

Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells

Abstract

Graphite oxide (GO)/Nafion composite membranes were prepared and used for polymer electrolyte membrane fuel cells (PEMFCs). Membranes were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) which showed the distribution of graphite oxide sheets in a Nafion polymer matrix. Fourier transform infrared spectroscopy data (FTIR) for Nafion and GO showed vibrations at 3440 cm−1 which was attributed to intermolecular hydrogen bonding and at 1724 cm−1 ascribed to the CO stretching frequency. The proton conductivities of GO (4 wt%)/Nafion composite, Nafion 212 and Nafion recast membranes at 30 °C and 100% humidity were 0.078, 0.068 and 0.043 S cm−1 respectively. The fuel cell performance of the GO (4 wt%)/Nafion composite membrane gave a maximum power density of 415 mW cm−2 at 0.390 V at 60 °C. At 100 °C a GO (4 wt%)/Nafion membrane fuel cell performance of 212 mW cm−2 was obtained which was much better than those of Nafion recast and Nafion 212 under 25% relative humidity.

Graphical abstract: Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells

Article information

Article type
Paper
Submitted
08 Feb 2012
Accepted
25 Jul 2012
First published
26 Jul 2012

RSC Adv., 2012,2, 8777-8782

Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells

R. Kumar, C. Xu and K. Scott, RSC Adv., 2012, 2, 8777 DOI: 10.1039/C2RA20225E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements