Issue 24, 2012

Microstructural and thermal investigations of HfO2 nanoparticles

Abstract

Monodispersed HfO2 nanoparticles can be readily prepared at room temperature by the ammonia catalyzed hydrolysis and condensation of hafnium(IV) tert-butoxide in the presence of a surfactant. The nanoparticles are faceted with an average diameter of about 4 nm. The as-synthesized amorphous nanoparticles crystallize upon post-synthesis heat treatment. The crystallization temperature of the nanoparticles can be controlled by adjusting the annealing atmosphere. The HfO2 nanoparticles have a narrow size distribution, large specific surface area and the thermal conductivity of pressed pellets is drastically reduced compared to the bulk counterpart. The specific surface area was about 239 m2 g−1 on as-prepared samples while those annealed at 500 °C have a surface area of 221 m2 g−1 showing that the heat treatment produced no significant increase in particle size. Transmission electron microscopy (TEM) further confirmed that the nanoparticles annealed at different temperatures while X-ray diffraction studies of the crystallized nanoparticles revealed that HfO2 nanoparticles were monoclinic in structure. High density pellets of the as-synthesized HfO2 nanoparticles were obtained, using both spark plasma sintering and uniaxial hot pressing, and their thermal conductivity was measured in the temperature range from 300 to 775 K. A large reduction of the thermal conductivity was observed for HfO2 nanoparticles as compared to that of bulk HfO2. The decrease in thermal conductivity is discussed in terms of the microstructure of the compacted samples. The synthetic procedure used in this work can be readily modified for large scale production of monodispersed HfO2 nanoparticles.

Graphical abstract: Microstructural and thermal investigations of HfO2 nanoparticles

Article information

Article type
Paper
Submitted
21 May 2012
Accepted
29 Jul 2012
First published
28 Aug 2012

RSC Adv., 2012,2, 9207-9213

Microstructural and thermal investigations of HfO2 nanoparticles

G. S. Chaubey, Y. Yao, J. P. A. Makongo, P. Sahoo, D. Misra, P. F. P. Poudeu and J. B. Wiley, RSC Adv., 2012, 2, 9207 DOI: 10.1039/C2RA21003G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements