ESIPT based dual fluorescent sensor and concentration dependent reconfigurable boolean operators†
Abstract
Probes 1 and 2 (CH3CN–H2O; 4 : 1) at pH 7.0 ± 0.1 (10 mM, HEPES) selectively bind with Zn2+ ions and give a new emission band at 490 nm. These can estimate 20 nM Zn2+ ions as the lowest detection limit. The determination of Zn2+ ions by probe 1 is not interfered by the presence of other metal ions viz. Na+, K+, Mg2+, Ca2+, Sr2+, Fe2+, Co2+, Ni2+, Cd2+, Ag+, Hg2+. However, in the case of probe 2 Cu2+ causes only the fluorescence quenching. In acetonitrile, the addition of different concentrations of Cu2+ (2 μM, 5 μM, 10 μM) and a fixed amount of F− (25 μM) to a solution of 2 (0.25 μM, CH3CN) elaborates Cu2+ ion concentration dependent NOR, INH and AND Boolean operators with three distinct emission channels at 585, 515 and 400 nm, respectively.