Synchronously synthesized core–shell LiNi1/3Co1/3Mn1/3O2/carbon nanocomposites as cathode materials for high performance lithium ion batteries†
Abstract
LiNi1/3Co1/3Mn1/3O2/carbon core–shell nanocomposites with sizes of ∼100 nm and carbon shell thicknesses of ∼6 nm are obtained by a modified Pechini process, in which LiNi1/3Co1/3Mn1/3O2 is formed synchronously with a carbon coating in the presence of polyethylene glycol-600. Electrochemical measurements show that the nanocomposites deliver a stable discharge capacity of 175 mA h g−1 at 1 C and a capacity decay rate of <3% after 100 cycles. The effects of synthesis temperature on the electrochemical performance of the nanocomposites are examined, which shows that the discharge capacities increase from 154 to 175 mA h g−1 as the temperature increases from 800 to 1000 °C. Meanwhile, the electrochemical performances of the nanocomposites with carbon content varying from 0 to 20.8% are examined. Among these composites, that with 15.5% carbon content exhibits the highest and most stable discharge behaviour at 1 C for 100 cycles.