Issue 27, 2012

Water-soluble gold nanoparticles stabilized with cationic phosphonium thiolate ligands

Abstract

Attachment of cationic groups to the surface of gold nanoparticles (AuNPs) is an attractive proposition for facilitating mitochondria-targeted therapeutics and diagnostics. With this in mind we have prepared and characterised AuNPs functionalised with phosphonium groups derived from either triarylphosphoniopropylthiosulfate zwitterions or ω-thioacetylpropyl(triphenyl)phosphonium salts; organophosphonium cations display remarkable lipophilicity and are readily taken up by cells and are concentrated in the mitochondria. The phosphonium-functionalised AuNPs can be dispersed in water and biological media. Transmission Electron Microscopy reveals the formation of spherical particles with diameters in the range 3–5 nm. The presence of the phosphonioalkylthiolate ligands on the surface of the AuNPs is confirmed by XPS, LDI-TOF-MS, TOF-SIMS and 31P NMR spectroscopy. The phosphonium-AuNPs display excellent stability and preliminary studies indicate that the phosphonioalkylthiolate ligands are slowly oxidised over a period of months to the corresponding phosphonioalkylsulfonate species with a concomitant increase in the particle size, and particle size distribution, of the AuNPs.

Graphical abstract: Water-soluble gold nanoparticles stabilized with cationic phosphonium thiolate ligands

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2012
Accepted
28 Aug 2012
First published
21 Sep 2012

RSC Adv., 2012,2, 10345-10351

Water-soluble gold nanoparticles stabilized with cationic phosphonium thiolate ligands

Y. Ju-Nam, Y. Chen, J. J. Ojeda, D. W. Allen, N. A. Cross, P. H. E. Gardiner and N. Bricklebank, RSC Adv., 2012, 2, 10345 DOI: 10.1039/C2RA21421K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements