Issue 4, 2012

Direct observation of a ferri-to-ferromagnetic transition in a fluoride-bridged 3d–4f molecular cluster

Abstract

We report on the synthesis, crystal structure and magnetic characterisation of the trinuclear, fluoride-bridged, molecular nanomagnet [Dy(hfac)3(H2O)–CrF2(py)4–Dy(hfac)3(NO3)] (1) (hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone, py = pyridine) and a closely related dinuclear species [Dy(hfac)4–CrF2(py)4]·½CHCl3 (2). Element-specific magnetisation curves obtained on 1 by X-ray magnetic circular dichroism (XMCD) allow us to directly observe the field-induced transition from a ferrimagnetic to a ferromagnetic arrangement of the Dy and Cr magnetic moments. By fitting a spin-Hamiltonian model to the XMCD data we extract a weak antiferromagnetic exchange coupling of j = −0.18 cm−1 between the DyIII and CrIII ions. The value found from XMCD is consistent with SQUID magnetometry and inelastic neutron scattering measurements. Furthermore, alternating current susceptibility and muon-spin relaxation measurements reveal that 1 shows thermally activated relaxation of magnetisation with a small effective barrier for magnetisation reversal of Δeff = 3 cm−1. Density-functional theory calculations show that the Dy–Cr couplings originate from superexchange via the fluoride bridges.

Graphical abstract: Direct observation of a ferri-to-ferromagnetic transition in a fluoride-bridged 3d–4f molecular cluster

Supplementary files

Article information

Article type
Edge Article
Submitted
13 Oct 2011
Accepted
06 Dec 2011
First published
07 Dec 2011

Chem. Sci., 2012,3, 1024-1032

Direct observation of a ferri-to-ferromagnetic transition in a fluoride-bridged 3d–4f molecular cluster

J. Dreiser, K. S. Pedersen, C. Piamonteze, S. Rusponi, Z. Salman, Md. E. Ali, M. Schau-Magnussen, C. Aa. Thuesen, S. Piligkos, H. Weihe, H. Mutka, O. Waldmann, P. Oppeneer, J. Bendix, F. Nolting and H. Brune, Chem. Sci., 2012, 3, 1024 DOI: 10.1039/C2SC00794K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements