Issue 4, 2012

Lewis acid enhancement by juxtaposition with an onium ion: the case of a mercury stibonium complex

Abstract

While diarylmercury derivatives (Ar2Hg) are usually not Lewis acidic, we have recently observed that bis(μ-1,8-naphthalenediyl)mercury(II)(bisphenylstibonium(V)) ([2]+), a compound that possesses a Ar2Hg moiety flanked on one of its sides by a stibonium unit, readily binds bromide or iodide ligands at the mercury center. To further investigate this behavior and understand its origin, we now report a series of results dealing with the coordination chemistry of [2]+. In particular, we show that this cation interacts with neutral donor ligands such as THF and DMAP to afford [2-THF]+ and [2-DMAP3]+, respectively, which have been isolated as [PF6] salts. 1H and 199Hg NMR titration experiments carried out in DMSO-d6 indicate that the mercury center of [2]+ engages heavy halide anions to afford the corresponding complexes 2-Cl, 2-Br and 2-I whose stability constants are equal to 1890 (±10) M−1, 500 (±10) M−1, and 145 (±5) M−1, respectively. In the case of chloride, binding of a second halide ligand at antimony is observed leading to [2-Cl2] which has been characterized as a [nBu4N]+ salt. Results obtained from titrating [2]+ against F also indicate the formation of a complex, albeit with antimony as the primary anion binding site. Although the short Hg–Sb distances observed in these complexes (3.04–3.09 Å) remains essentially invariant, NBO calculations show a distinct strengthening of a 6s(Hg)→σ*(Sb–C) donor–acceptor interaction upon coordination of a halide to the mercury center. These NBO results also reveal weak 5d(Hg)→σ*(Sb–C) dative interactions which, as suggested by Hg L3 and Sb K-edge XANES measurements, are too weak to induce a measurable oxidation of the mercury center. In turn, we conclude that the enhanced Lewis acidity of the diarylmercury unit of [2]+ results from the presence of the stibonium moiety which provides a Coulombic pull for the coordination of Lewis bases while also drawing electron density away from the mercury atom via relatively weak orbital interactions.

Graphical abstract: Lewis acid enhancement by juxtaposition with an onium ion: the case of a mercury stibonium complex

Supplementary files

Article information

Article type
Edge Article
Submitted
11 Nov 2011
Accepted
12 Dec 2011
First published
14 Dec 2011

Chem. Sci., 2012,3, 1128-1136

Lewis acid enhancement by juxtaposition with an onium ion: the case of a mercury stibonium complex

T. Lin, R. C. Nelson, T. Wu, J. T. Miller and F. P. Gabbaï, Chem. Sci., 2012, 3, 1128 DOI: 10.1039/C2SC00904H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements