Issue 3, 2012

Complexing a small interfering RNA with divalent cationic surfactants

Abstract

Small interfering RNAs (siRNAs) are double strand RNA fragments of short sequence (∼20 bp). RNA interference came into focus only 13 years ago as a major biological breakthrough and, since then, many studies have described the involvement of siRNA in gene silencing. Application to gene therapy is extremely promising, provided that appropriate vectors are used. Optimising transfection efficacy strongly relies on the knowledge and tuning of physicochemical properties of transfection complexes, such as size, surface charge and internal interactions, which govern in vitro and in vivo stability. Here we report a study on siRNA complexation with micelles of two types of divalent cationic surfactants, i.e. three Gemini bis(quaternary ammonium) bromide with variable spacer length (12-3-12, 12-6-12, 12-12-12) and one weak electrolyte surfactant with a triazine polar head. The process of complex formation was followed by SANS, DLS and zeta potential. Charge density on micelles and counterion exchange were key factors in determining the extent of complexation, as it happens to polymer electrolytes interacting with micelles. A description of complex formation was given in terms of liquid–liquid micro-phase separation, due to internally structured coacervates progressively nucleating from the micelle solution upon siRNA addition. An affinity order between surfactants and siRNA could be established on the basis of the obtained results and their comparison.

Graphical abstract: Complexing a small interfering RNA with divalent cationic surfactants

Article information

Article type
Paper
Submitted
01 Aug 2011
Accepted
04 Oct 2011
First published
08 Nov 2011

Soft Matter, 2012,8, 749-756

Complexing a small interfering RNA with divalent cationic surfactants

S. Ristori, L. Ciani, G. Candiani, C. Battistini, A. Frati, I. Grillo and M. In, Soft Matter, 2012, 8, 749 DOI: 10.1039/C1SM06470C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements