Issue 3, 2012

Non-equilibrium cluster states in colloids with competing interactions

Abstract

Cluster formation and gelation are studied in a colloidal model system with competing short-range attractions and long-range repulsions. In contrast to predictions by equilibrium theory, the size of clusters spontaneously formed at low colloidal volume fractions decreases with increasing strength of the short-range attraction. Moreover, the microstructure and shape of the clusters sensitively depend on the strength of the short-range attraction: from compact and crystalline clusters at relatively weak attractions to disordered and quasi-linear clusters at strong attractions. By systematically varying attraction strength and colloidal volume fraction, we observe gelation at relatively high volume fraction. The structure of the gel depends on attraction strength: in systems with the lowest attraction strength, crowding of crystalline clusters leads to microcrystalline gels. In contrast, in systems with relatively strong attraction strength, percolation of quasi-linear clusters leads to low-density gels. In analyzing the results we show that nucleation and rearrangement processes play a key role in determining the properties of clusters and the mechanism of gelation. This study implies that by tuning the strength of short-range attractions, the growth mechanism as well as the structure of clusters can be controlled, and thereby the route to a gel state.

Graphical abstract: Non-equilibrium cluster states in colloids with competing interactions

Article information

Article type
Paper
Submitted
17 Aug 2011
Accepted
10 Oct 2011
First published
03 Nov 2011

Soft Matter, 2012,8, 667-672

Non-equilibrium cluster states in colloids with competing interactions

T. H. Zhang, J. Klok, R. Hans Tromp, J. Groenewold and W. K. Kegel, Soft Matter, 2012, 8, 667 DOI: 10.1039/C1SM06570J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements