Issue 10, 2012

High-fidelity fabrication of Au–polymer Janus nanoparticles using a solution template approach

Abstract

Janus particles have attracted significant attention in recent years, due to their potential in nanomanufacturing. Their asymmetric features impart unique physical and chemical properties, which can be tuned and utilized to control their solution-state assembly. While several examples of Janus nanostructures have been reported in the literature, the scientific community continues to pursue synthetic routes which are less time and resource intensive. Herein, we describe a facile method to synthesize Janus nanoparticles in which colloidal micelles template the in situ formation of Au nanoparticles in the shell layer. The resulting morphologies of the hybrid Au–polymer nanoparticles can be adjusted widely by controlling the polymer and reducing agent (HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)) concentrations. High-fidelity populations of Au–micelle Janus nanoparticles are obtained when the polymer concentration is high (≥1.0 × 10−6 mmol L−1) and the HEPES concentration is low (≤0.3 mol L−1). Conversely, when the HEPES concentration is high (≥0.5 mol L−1) and the polymer concentration is low (≤2.4 × 10−7 mmol L−1), raspberry-like clusters are formed, where each micelle encumbers several Au nanocrystals. Our method is attractive in that the number of Au nanoparticles on each Au–micelle entity can be controlled using a scalable, aqueous solution process. It also has significant potential for the directed assembly of Au nanoparticle superstructures, as the nature and geometry of the polymer precursors can be varied.

Graphical abstract: High-fidelity fabrication of Au–polymer Janus nanoparticles using a solution template approach

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2011
Accepted
06 Jan 2012
First published
02 Feb 2012

Soft Matter, 2012,8, 2965-2971

High-fidelity fabrication of Au–polymer Janus nanoparticles using a solution template approach

T. Rao, X. Dong, B. C. Katzenmeyer, C. Wesdemiotis, S. Z. D. Cheng and M. L. Becker, Soft Matter, 2012, 8, 2965 DOI: 10.1039/C2SM07002B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements