Issue 25, 2012

Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure

Abstract

Poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) block co-polymers (PEO–PPO–PEO, sold as Pluronics, Poloxamers, Tetronics) are a widely used class of amphiphilic materials for different biological applications. In fact for certain members of the Pluronics series, the interactions of block segments with living cells alter the lipid membrane properties and facilitate the permeation of drugs. A fuller understanding of the molecular mechanisms underpinning these interactions is essential for ensuring their safety and efficacy in biomedical applications and to inform the design of new amphiphilic copolymers for potential use in a clinical setting. In this paper, by means of atomistic molecular dynamics simulations and membrane lysis assays, we investigate the relationship between the molecular conformations of a subset of the Pluronic copolymers (L31, L61, L62 and L64) and their haemolytic activity. Our computational studies suggest that the hydrophilic blocks in these copolymers interact with the polar head groups of lipid molecules, resulting in a predicted modification of the structure of the membranes. Parallel membrane lysis assays in human erythrocytes indicate differences in the rates of haemolysis, as a result of incubation with these polymers, that correlate well with the predicted interactions from the atomistic simulations. The computational data thus provide a putative mechanism to rationalize the available experimental data on membrane lysis by these copolymers and quantitatively agree with haemoglobin release endpoints measured when copolymers with the same molecular weight and structure as of those modelled are incubated with erythrocytes. The data further suggest some new structure–function relationships at the nanoscale that are likely to be of importance in determining the biological activity of these otherwise inert copolymers.

Graphical abstract: Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2012
Accepted
13 Apr 2012
First published
21 May 2012

Soft Matter, 2012,8, 6744-6754

Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure

S. Nawaz, M. Redhead, G. Mantovani, C. Alexander, C. Bosquillon and P. Carbone, Soft Matter, 2012, 8, 6744 DOI: 10.1039/C2SM25327E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements