Issue 21, 2013

Rapid real-time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor

Abstract

Procalcitonin (PCT) is a promising biomarker for identification of the origin and severity of sepsis, which is a deadly body infection. In this work, we report the preparation of a surface plasmon resonance (SPR) biosensor which utilizes a molecular imprinted polymer surface for rapid and reliable detection of PCT. The molecular imprinted surface was prepared using a microcontact imprinting technique, in which PCT molecules were first immobilized onto a glass support and brought into contact with a solution of 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) on a SPR sensor, then the polymerization process was performed. After removal of the PCT molecules, specific molecular recognition sites were obtained, where PCT molecules can selectively rebind, only at the surface of the polymer matrix. PCT detection studies were carried out using PCT solutions in phosphate buffer and simulated blood plasma (SBP) at different concentrations. The SPR biosensor can detect very low concentrations (9.9 ng mL−1) of PCT within approximately 1 h, in both phosphate buffer and SBP. High selectivity of the biosensor against PCT was also demonstrated in the presence of several competitive proteins such as human serum albumin, myoglobin and cytochrome c.

Graphical abstract: Rapid real-time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2013
Accepted
06 Aug 2013
First published
08 Aug 2013

Analyst, 2013,138, 6422-6428

Rapid real-time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor

G. Sener, E. Ozgur, A. Y. Rad, L. Uzun, R. Say and A. Denizli, Analyst, 2013, 138, 6422 DOI: 10.1039/C3AN00958K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements