Issue 24, 2013

Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment

Abstract

The possibility of using novel architectures based on carbon nanotubes (CNTs) for a realistic monitoring of the air quality in an urban environment requires the capability to monitor concentrations of polluting gases in the low-ppb range. This limit has been so far virtually neglected, as most of the testing of new ammonia gas sensor devices based on CNTs is carried out above the ppm limit. In this paper, we present single-wall carbon nanotube (SWCNT) chemiresistor gas sensors operating at room temperature, displaying an enhanced sensitivity to NH3. Ammonia concentrations in air as low as 20 ppb have been measured, and a detection limit of 3 ppb is demonstrated, which is in the full range of the average NH3 concentration in an urban environment and well below the sensitivities so far reported for pristine, non-functionalized SWCNTs operating at room temperature. In addition to careful preparation of the SWCNT layers, through sonication and dielectrophoresis that improved the quality of the CNT bundle layers, the low-ppb limit is also attained by revealing and properly tracking a fast dynamics channel in the desorption process of the polluting gas molecules.

Graphical abstract: Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment

Article information

Article type
Paper
Submitted
19 Jun 2013
Accepted
03 Oct 2013
First published
04 Oct 2013

Analyst, 2013,138, 7392-7399

Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment

F. Rigoni, S. Tognolini, P. Borghetti, G. Drera, S. Pagliara, A. Goldoni and L. Sangaletti, Analyst, 2013, 138, 7392 DOI: 10.1039/C3AN01209C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements