Issue 20, 2013

The global identification of tRNA isoacceptors by targeted tandem mass spectrometry

Abstract

Transfer ribonucleic acids (tRNA) are a biologically significant class of non-coding ribonucleic acids (ncRNAs) that pose unique analytical challenges for complete characterization. Here we present a robust and simple method for the consistent and accurate identification of individual tRNAs from a pool of total tRNA obtained from cell lysate. Through this method individual isoacceptor tRNAs are identified by the detection of unique oligonucleotide sequences which arise from a single enzymatic digestion. These unique sequences can be detected by monitoring specific transitions from precursor to product ions. Thus, for any pool of known tRNA sequences including posttranscriptional modifications, targeted tandem mass spectrometry can be used for monitoring these specific transitions. The proposed method was developed and validated using a set of known tRNAs from Escherichia coli. This approach was found to identify 41 ± 2 of the predicted 47 isoaccepting tRNAs in E. coli from targeted tandem mass spectrometry using only 24 precursor m/z values. This method should be easily adapted to other bacterial systems for both genomic and posttranscriptional analysis of tRNAs, and is likely suitable for future clinical applications.

Graphical abstract: The global identification of tRNA isoacceptors by targeted tandem mass spectrometry

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2013
Accepted
01 Aug 2013
First published
05 Aug 2013

Analyst, 2013,138, 6063-6072

The global identification of tRNA isoacceptors by targeted tandem mass spectrometry

C. Wetzel and P. A. Limbach, Analyst, 2013, 138, 6063 DOI: 10.1039/C3AN01224G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements