Issue 91, 2013

Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane

Abstract

Highly dispersed Ag nanoparticles supported on high-surface-area 3DOM La0.6Sr0.4MnO3 were successfully generated via the dimethoxytetraethylene glycol-assisted gas bubbling reduction route. The macroporous materials showed super catalytic performance for methane combustion.

Graphical abstract: Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane

Supplementary files

Article information

Article type
Communication
Submitted
17 Aug 2013
Accepted
27 Sep 2013
First published
27 Sep 2013

Chem. Commun., 2013,49, 10748-10750

Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane

H. Arandiyan, H. Dai, J. Deng, Y. Wang, S. Xie and J. Li, Chem. Commun., 2013, 49, 10748 DOI: 10.1039/C3CC46312E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements