Issue 1, 2013

Evaluation of molecular crystal structures using Full Interaction Maps

Abstract

The specific crystalline form of a compound has a significant impact on its solid state properties. A key requirement for chemists developing crystalline materials is therefore to understand and evaluate the crystal form under investigation. We show here how the visualisation of molecular interaction maps within the context of a crystal structure can be used to evaluate the stability of polymorphic structures, assess multiple types of non-covalent interactions and provide a platform for crystal morphology analysis. Examples of three industrially-relevant compounds – sulfathiazole, anastrozole and cipamfylline – illustrate this well. A qualitative agreement with experimental stability data is observed for the five sulfathiazole crystal forms. The anastrozole crystal structure is demonstrated to optimise interactions to the strongest acceptor sites even though there are no conventional hydrogen-bond donors in the structure. Finally, the fastest growing plane of the needle-like morphology of cipamfylline is shown to have more H-bond donor and acceptor interactions per surface area than the slower growing planes.

Graphical abstract: Evaluation of molecular crystal structures using Full Interaction Maps

Article information

Article type
Paper
Submitted
28 May 2012
Accepted
30 Aug 2012
First published
31 Aug 2012

CrystEngComm, 2013,15, 65-72

Evaluation of molecular crystal structures using Full Interaction Maps

P. A. Wood, T. S. G. Olsson, J. C. Cole, S. J. Cottrell, N. Feeder, P. T. A. Galek, C. R. Groom and E. Pidcock, CrystEngComm, 2013, 15, 65 DOI: 10.1039/C2CE25849H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements