Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices†
Abstract
Research on thermoelectrical energy conversion, the reuse of waste heat produced by some mechanical or chemical processes to generate electricity, has recently gained some momentum. The calculation of the electronic parameters entering the figure of merit of this energy conversion, and therefore the discovery of efficient materials, is usually performed starting from Landauer's approach to quantum transport coupled with Onsager's linear response theory. As it is well known, this approach suffers from certain serious drawbacks. Here, we discuss alternative dynamical methods that can go beyond the validity of Landauer's/Onsager's approach for electronic transport. They can be used to validate the predictions of Landauer's/Onsager's approach and to investigate systems for which this approach has been shown to be unsatisfactory.
- This article is part of the themed collection: Charge transfer: experiment, theory and computation