Issue 9, 2013

Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment

Abstract

Laser ablation in liquids is now commonly used to produce colloidal nanoparticles (NPs) that have found numerous applications in different areas. In experiments, NPs of different materials can be rather easily obtained by using laser systems with various pulse durations, shapes, wavelengths, and fluences. In this paper, we focus our attention on metal (gold) NPs produced by ultra-short laser pulses. To better understand the mechanisms of the NPs formation, we perform modeling of femtosecond laser interactions with a gold target in the presence of liquid (water). Simulation of the ablation process over several nanoseconds shows that most of the primary NPs originate from the ablated metastable liquid layer, whereas only a minority is formed by condensation inside the cavitation bubble. These particles will further grow/evaporate, and coagulate during a much longer collision stage in the liquid colloid.

Graphical abstract: Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment

Article information

Article type
Paper
Submitted
31 Jul 2012
Accepted
06 Dec 2012
First published
15 Jan 2013

Phys. Chem. Chem. Phys., 2013,15, 3108-3114

Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov and K. V. Khishchenko, Phys. Chem. Chem. Phys., 2013, 15, 3108 DOI: 10.1039/C2CP42650A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements