Issue 16, 2013

What stabilizes close arginine pairing in proteins?

Abstract

Close stacking of arginine residues are often observed in protein structures despite the highly repulsive nature of the close like-charged groups. Physical factors stabilizing the close guanidinium ions of arginine side-chains have been previously studied in water and in protein-like environments, and the hydration free energy has been emphasized to be an important factor. However, how close arginine pairs are stabilized in real proteins has not been fully understood yet. In this paper, we show that arginine pairs are more frequently found in the protein interior than expected from the frequency of unpaired arginines buried inside protein through a statistical analysis of the protein structure database. We then confirm that 4 selected arginine pairs buried in the protein are indeed positively charged rather than neutralized, by molecular dynamics simulations and pKa estimation with molecular mechanics–Poisson–Boltzmann calculations. Further energy decomposition analysis shows that the hydration free energy may not be strong enough to overcome the repulsive Coulomb interaction between the positively charged arginine residues buried inside the protein. Instead, a highly polar interaction network is identified around each buried arginine pair, and the electrostatic interactions within such network are strong enough to stabilize the repulsive interaction of the buried arginine pair for the 4 selected cases. The polar interaction network is highly conserved evolutionarily in some proteins, implicating their roles in protein stabilization or biochemical function.

Graphical abstract: What stabilizes close arginine pairing in proteins?

Supplementary files

Article information

Article type
Paper
Submitted
14 Jan 2013
Accepted
14 Feb 2013
First published
20 Feb 2013

Phys. Chem. Chem. Phys., 2013,15, 5844-5853

What stabilizes close arginine pairing in proteins?

D. Lee, J. Lee and C. Seok, Phys. Chem. Chem. Phys., 2013, 15, 5844 DOI: 10.1039/C3CP00160A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements