Issue 1, 2013

Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing

Abstract

Cation exchange is an age-old technique for the chemical conversion of liquids or extended solids by place-exchanging the cations in an ionic material with a different set of cations. The technique is undergoing a major revival with the advent of high-quality nanocrystals: researchers are now able to overcome the limitations in bulk systems and fully exploit cation exchange for materials synthesis and discovery via rapid, low-temperature transformations in the solid state. In this tutorial review, we discuss cation exchange as a promising materials synthesis and discovery tool. Exchange on the nanoscale exhibits some unique attributes: rapid kinetics at room temperature (orders of magnitude faster than in the bulk) and the tuning of reactivity via control of nanocrystal size, shape, and surface faceting. These features make cation exchange a convenient tool for accessing nanocrystal compositions and morphologies for which conventional synthesis may not be established. A simple exchange reaction allows extension of nanochemistry to a larger part of the periodic table, beyond the typical gamut of II–VI, IV–VI, and III–V materials. Cation exchange transformations in nanocrystals can be topotactic and size- and shape-conserving, allowing nanocrystals synthesized by conventional methods to be used as templates for production of compositionally novel, multicomponent, or doped nanocrystals. Since phases and compositions resulting from an exchange reaction can be kinetically controlled, rather than governed by the phase diagram, nanocrystals of metastable and hitherto inaccessible compositions are attainable. Outside of materials synthesis, applications for cation exchange exist in water purification, chemical staining, and sensing. Since nanoscale cation exchange occurs rapidly at room temperature, it can be integrated with sensitive environments such as those in biological systems. Cation exchange is already allowing access to a variety of new materials and processes. With better mechanistic understanding and control, researchers may be able to advance the field to a stage where a custom nanostructure of arbitrary complexity would be achievable by simple cation exchange chemistry and a basic understanding of the periodic table.

Graphical abstract: Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing

Article information

Article type
Tutorial Review
Submitted
03 Jul 2012
First published
11 Sep 2012

Chem. Soc. Rev., 2013,42, 89-96

Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing

J. B. Rivest and P. K. Jain, Chem. Soc. Rev., 2013, 42, 89 DOI: 10.1039/C2CS35241A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements