Issue 20, 2013

Carbon nanotube-based heterostructures for solar energy applications

Abstract

One means of combining the unique physical and chemical properties of both carbon nanotubes and complementary material motifs (such as metal sulfide quantum dots (QDs), metal oxide nanostructures, and polymers) can be achieved by generating carbon nanotube (CNT)-based heterostructures. These materials can be subsequently utilized as novel and interesting constituent building blocks for the assembly of functional light energy harvesting devices and because of their architectural and functional flexibility, can potentially open up novel means of using and taking advantage of existing renewable energy sources. In this review, we present the reliable and reproducible synthesis of several unique model CNT-based heterostructured systems as well as include an accompanying discussion about the charge transfer and energy flow properties of these materials for their potential incorporation into a range of practical solar energy conversion devices.

Graphical abstract: Carbon nanotube-based heterostructures for solar energy applications

Article information

Article type
Review Article
Submitted
03 Mar 2013
First published
10 Jul 2013

Chem. Soc. Rev., 2013,42, 8134-8156

Carbon nanotube-based heterostructures for solar energy applications

L. Wang, H. Liu, R. M. Konik, J. A. Misewich and S. S. Wong, Chem. Soc. Rev., 2013, 42, 8134 DOI: 10.1039/C3CS60088B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements