Issue 1, 2013

Salt metathesis for the synthesis of M–Al and M–H–Al bonds

Abstract

Salt metathesis has been exploited in the synthesis of M–Al bonds, stabilized by a variety of chelating N-donor substituents at aluminium and including the first examples of such systems featuring ancillary guanidinato frameworks. Importantly, this synthetic approach can be extended to the synthesis of σ-alane complexes through the use of hydride-containing transition metal nucleophiles. Cp′Mn(CO)2-[H(Cl)Al{(NiPr)2CPh}] synthesized via this route features an alane ligand bound in a more ‘side-on’ fashion than other alane complexes, although DFT calculations imply that the potential energy surface associated with variation in the Mn–H–Al angle is a very soft one.

Graphical abstract: Salt metathesis for the synthesis of M–Al and M–H–Al bonds

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2012
Accepted
02 Oct 2012
First published
04 Oct 2012

Dalton Trans., 2013,42, 249-258

Salt metathesis for the synthesis of M–Al and M–H–Al bonds

I. M. Riddlestone, J. Urbano, N. Phillips, M. J. Kelly, D. Vidovic, J. I. Bates, R. Taylor and S. Aldridge, Dalton Trans., 2013, 42, 249 DOI: 10.1039/C2DT31974H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements