Issue 19, 2013

Lewis base complexes of AlH3: prediction of preferred structure and stoichiometry

Abstract

The structures adopted by a range of complexes AlH3·nL, (n = 1 or 2), have been explored in detail to identify the factors that determine the value of n, and whether a monomeric or dimeric arrangement is preferred for the 1 : 1 complexes. Single-crystal X-ray diffraction, vibrational and NMR spectroscopies, and thermal analysis data have been collected, DFT calculations have been performed for AlH3·nL species, and pKa values have been collated for a series of amine and phosphine ligands L. The pKa of the ligand L exerts an important influence on the type of complex formed: as the basicity of L increases, a monomeric structure is favoured over a dimeric arrangement. Dimeric amine complexes form if pKa < 9.76, while monomeric complexes are preferred when pKa > 9.99. The steric requirements of L also influence the structural preference: bulky ligands with large cone angles (>163°) tend to favour formation of monomers, while smaller cone angles (<125°) encourage the formation of dimeric or 1 : 2 adducts. The steric bulk of the ligand appears to be more important for phosphine complexes, with smaller phosphines being unable to stabilise the complex at ambient temperatures even through dimerisation. Raman spectroscopy and DFT calculations have been particularly helpful in elucidating the stoichiometric preferences of complexes that have been contentious; these include AlH3·NMe2Et, AlH3·NMe3 and AlH3·nEt2O.

Graphical abstract: Lewis base complexes of AlH3: prediction of preferred structure and stoichiometry

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2013
Accepted
06 Mar 2013
First published
07 Mar 2013

Dalton Trans., 2013,42, 6965-6978

Lewis base complexes of AlH3: prediction of preferred structure and stoichiometry

T. D. Humphries, K. T. Munroe, A. Decken and G. S. McGrady, Dalton Trans., 2013, 42, 6965 DOI: 10.1039/C3DT00047H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements