Issue 45, 2013

Theoretical studies of electronic structures, magnetic properties and electron conductivities of one-dimensional Nin (n = 3, 5, 7) complexes

Abstract

Electronic structures, magnetic properties and electron conductivities of linearly aligned one-dimensional (1-D) Ni(II)3, Ni(II)5 and Ni(II)7 complexes, i.e. [Ni3(dpa)4NCS2], [Ni5(tpda)4X2] (X = Cl, CN, N3, NCS) and [Ni7(teptra)4Cl2], are systematically investigated by the broken-symmetry B3LYP calculations and simulations based on an elastic scattering Green's function theory. Calculated spin densities appear only at terminal Ni ions, while inner Ni ions are the closed-shell. The calculated effective exchange integrals (Jab) values reproduce well the experimental results that indicate anti-ferromagnetic (AF) interactions between two terminal Ni ions. Natural orbitals and their occupation numbers show that a change in the weak AF couplings by axial ligands in penta-nickel complexes originates in σ-type orbitals. Simulated electron conductivities of [Ni3(dpa)4NCS2] and [Ni5(tpda)4NCS2] semi-quantitatively correspond to the experimental results. By the analyses, it is elucidated that electrons are mainly transmitted by σ-type orbitals, but the bonds between Au and axial ligands are also dominant factors for conductivity.

Graphical abstract: Theoretical studies of electronic structures, magnetic properties and electron conductivities of one-dimensional Nin (n = 3, 5, 7) complexes

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2013
Accepted
10 Sep 2013
First published
10 Sep 2013

Dalton Trans., 2013,42, 16200-16208

Theoretical studies of electronic structures, magnetic properties and electron conductivities of one-dimensional Nin (n = 3, 5, 7) complexes

Y. Kitagawa, T. Matsui, Y. Nakanishi, Y. Shigeta, T. Kawakami, M. Okumura and K. Yamaguchi, Dalton Trans., 2013, 42, 16200 DOI: 10.1039/C3DT51466H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements