Issue 6, 2013

Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction

Abstract

Nature has evolved multiple enzymatic strategies for the degradation of plant cell wall polysaccharides, which are central to carbon flux in the biosphere and an integral part of renewable biofuels production. Many biomass-degrading organisms secrete synergistic cocktails of individual enzymes with one or several catalytic domains per enzyme, whereas a few bacteria synthesize large multi-enzyme complexes, termed cellulosomes, which contain multiple catalytic units per complex. Both enzyme systems employ similar catalytic chemistries; however, the physical mechanisms by which these enzyme systems degrade polysaccharides are still unclear. Here we examine a prominent example of each type, namely a free-enzyme cocktail expressed by the fungus Hypocrea jecorina and a cellulosome preparation secreted from the anaerobic bacterium Clostridium thermocellum. We observe striking differences in cellulose saccharification exhibited by these systems at the same protein loading. Free enzymes are more active on pretreated biomass and in contrast cellulosomes are much more active on purified cellulose. When combined, these systems display dramatic synergistic enzyme activity on cellulose. To gain further insights, we imaged free enzyme- and cellulosome-digested cellulose and biomass by transmission electron microscopy, which revealed evidence for different mechanisms of cellulose deconstruction by free enzymes and cellulosomes. Specifically, the free enzymes employ an ablative, fibril-sharpening mechanism, whereas cellulosomes physically separate individual cellulose microfibrils from larger particles resulting in enhanced access to cellulose surfaces. Interestingly, when the two enzyme systems are combined, we observe changes to the substrate that suggests mechanisms of synergistic deconstruction. Insight into the different mechanisms underlying these two polysaccharide deconstruction paradigms will eventually enable new strategies for enzyme engineering to overcome biomass recalcitrance.

Graphical abstract: Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2013
Accepted
08 Apr 2013
First published
08 Apr 2013

Energy Environ. Sci., 2013,6, 1858-1867

Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction

M. G. Resch, B. S. Donohoe, J. O. Baker, S. R. Decker, E. A. Bayer, G. T. Beckham and M. E. Himmel, Energy Environ. Sci., 2013, 6, 1858 DOI: 10.1039/C3EE00019B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements