Issue 11, 2013

Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii

Abstract

A nine-month in situ bioremediation study was conducted in Makua Military Reservation (MMR) in Oahu, Hawaii (USA) to evaluate the potential of molasses to enhance biodegradation of royal demolition explosive (RDX) and high-melting explosive (HMX) contaminated soil below the root zone. MMR has been in operation since the 1940's resulting in subsurface contamination that in some locations exceeds USEPA preliminary remediation goals for these chemicals. A molasses–water mixture (1 : 40 dilution) was applied to a treatment plot and clean water was applied to a control plot via seven flood irrigation events. Pore water samples were collected from 12 lysimeters installed at different depths in 3 boreholes in each test plot. The difference in mean concentrations of RDX in pore water samples from the two test plots was very highly significant (p < 0.001). The concentrations differences with depth were also very highly significant (p < 0.001) and degradation was greatly enhanced at depths from 5 to 13.5 ft. biodegradation was modeled as first order and the rate constant was 0.063 per day at 5 ft and decreased to 0.023 per day at 11 ft to 13.5 ft depth. Enhanced biodegradation of HMX was also observed in molasses treated plot samples but only at a depth of 5 ft. The difference in mean TOC concentration (surrogate for molasses) was highly significant with depth (p = 0.003) and very highly significant with treatment (p < 0.001). Mean total nitrogen concentrations also differed significantly with treatment (p < 0.001) and depth (p = 0.059). The molasses water mixture had a similar infiltration rate to that of plain water (average 4.12 ft per day) and reached the deepest sensor (31 ft) within 5 days of application. Most of the molasses was consumed by soil microorganisms by about 13.5 feet below ground surface and treatment of deeper depths may require greater molasses concentrations and/or more frequent flood irrigation. Use of the bioremediation method described herein could allow the sustainable use of live fire training ranges by enhancing biodegradation of explosives in situ and preventing them from migrating to through the vadose zone to underlying ground water and off-site.

Graphical abstract: Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2013
Accepted
06 Sep 2013
First published
13 Sep 2013

Environ. Sci.: Processes Impacts, 2013,15, 2023-2029

Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii

Z. M. Payne, K. M. Lamichhane, R. W. Babcock and S. J. Turnbull, Environ. Sci.: Processes Impacts, 2013, 15, 2023 DOI: 10.1039/C3EM00320E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements