Volume 160, 2013

Surface and interfacial tensions of Hofmeister electrolytes

Abstract

We present a theory that is able to account quantitatively for the surface and interfacial tensions of different electrolyte solutions. It is found that near the interface, ions can be separated into two classes: the kosmotropes and the chaotropes. While the kosmotropes remain hydrated near the interface and are repelled from it, the chaotropes loose their hydration sheath and become adsorbed to the surface. The anionic adsorption is strongly correlated with the Jones–Dole viscosity B-coefficient. Both hydration and polarizability must be taken into account to obtain a quantitative agreement with the experiments. To calculate the excess interfacial tension of the oil–electrolyte interface, the dispersion interactions must also be included. The theory can also be used to calculate the surface and the interfacial tensions of acid solutions, predicting a strong surface adsorption of hydronium ion.

Article information

Article type
Paper
Submitted
09 Apr 2012
Accepted
25 Apr 2012
First published
27 Apr 2012

Faraday Discuss., 2013,160, 75-87

Surface and interfacial tensions of Hofmeister electrolytes

A. P. dos Santos and Y. Levin, Faraday Discuss., 2013, 160, 75 DOI: 10.1039/C2FD20067H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements