Issue 6, 2013

Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol

Abstract

Investigations on heterogeneous iron catalysis in the selective aerobic oxidation of a primary alcohol are presented. Continuous flow technology was used in combination with an iron oxide nanoparticle catalyst stabilized in a mesoporous aluminosilicate support (“flow nanocatalysis”) as a process intensification tool to maximize catalyst efficiency. Using 5 mol% 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as a co-catalyst, up to 42% benzyl alcohol as a simple model substrate was selectively converted to benzaldehyde in a single pass of the reactor. Full conversion was achieved by continuous recirculation, simulating an extension of the catalyst bed. ICPMS analysis indicated that the catalyst is highly stable and does not leach under the investigated conditions, providing solid evidence for the participation of a heterogeneous iron species in the catalytic cycle.

Graphical abstract: Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol

Supplementary files

Article information

Article type
Paper
Submitted
12 Feb 2013
Accepted
19 Mar 2013
First published
19 Mar 2013
This article is Open Access

Green Chem., 2013,15, 1530-1537

Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol

D. Obermayer, A. M. Balu, A. A. Romero, W. Goessler, R. Luque and C. O. Kappe, Green Chem., 2013, 15, 1530 DOI: 10.1039/C3GC40307F

This is an Open Access article. The full version of this article can be posted on a website/blog, posted on an intranet, photocopied, emailed, distributed in a course pack or distributed in Continuing Medical Education (CME) materials provided that it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements