Issue 11, 2013

Characteristics and origin of char and coke from fast and slow, catalytic and thermal pyrolysis of biomass and relevant model compounds

Abstract

Char and coke from biomass catalytic pyrolysis have different origins. They cannot be lumped as one since they occupy different locations on the catalyst surface and, thus, contribute differently to catalyst deactivation. In this study, catalyst (ZSM-5) deactivation in the perspective of comparison of char and coke from pyrolysis of different biomass types is investigated. Pine sawdust, glucose, and cellulose are used as feedstocks in the pyrolysis experiments. Biomass char and coke samples produced via slow and fast, thermal and catalytic pyrolysis are characterized with respect to their overall content, oxidation reactivity, catalyst surface area, pore size distribution changes, bonding groups and their effect on catalyst performance. In particular, it is shown that char forms as an external layer on the catalyst surface and in its macropores, whereas coke forms inside the zeolite micropores via hydrogen transfer and addition reactions. The catalyst effect on glucose and pine slow catalytic pyrolysis is minor compared with that on cellulose slow catalytic pyrolysis, due to macropore blocking by char formation. In fast catalytic pyrolysis, catalyst deactivation is mainly attributed to micropore blocking by coke formation. Char and coke are shown to coexist on the catalyst surface after fast catalytic experiments, with the char content after glucose fast catalytic pyrolysis being 30 wt% of the total solid residue. The origins of char and coke in the cellulose, hemicellulose and lignin components of pine are identified and mechanisms for their formation are proposed.

Graphical abstract: Characteristics and origin of char and coke from fast and slow, catalytic and thermal pyrolysis of biomass and relevant model compounds

Article information

Article type
Paper
Submitted
03 Aug 2013
Accepted
12 Sep 2013
First published
13 Sep 2013

Green Chem., 2013,15, 3214-3229

Characteristics and origin of char and coke from fast and slow, catalytic and thermal pyrolysis of biomass and relevant model compounds

S. Du, J. A. Valla and G. M. Bollas, Green Chem., 2013, 15, 3214 DOI: 10.1039/C3GC41581C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements