Issue 20, 2013

Binder-free graphene foams for O2 electrodes of Li–O2 batteries

Abstract

We report a novel method to prepare bind-free graphene foams as O2 electrodes for Li–O2 batteries. The graphene foams are synthesized by electrochemical leavening of the graphite papers, followed by annealing in inert gas to control the amount of structural defects in the graphene foams. It was found that the structural defects were detrimental to the processes of the ORR and OER in Li–O2 batteries. The round-trip efficiencies and the cycling stabilities of the graphene foams were undermined by the structural defects. For example, the as-prepared graphene foam with a high defect level (ID/IG = 0.71) depicted a round-trip efficiency of only 0.51 and a 20th-cycle discharge capacity of only 340 mA h g−1 at a current density of 100 mA g−1. By contrast, the graphene foam electrode annealed at 800 °C with ID/IG = 0.07 delivered a round-trip efficiency of up to 80% with a stable discharge voltage at ∼2.8 V and a stable charge voltage below 3.8 V for 20 cycles. According to the analysis on the electrodes after 20 cycles, the structural defects led to the quickened decay of the graphene foams and boosted the formation of side products.

Graphical abstract: Binder-free graphene foams for O2 electrodes of Li–O2 batteries

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2013
Accepted
24 Jul 2013
First published
01 Aug 2013

Nanoscale, 2013,5, 9651-9658

Binder-free graphene foams for O2 electrodes of Li–O2 batteries

W. Zhang, J. Zhu, H. Ang, Y. Zeng, N. Xiao, Y. Gao, W. Liu, H. H. Hng and Q. Yan, Nanoscale, 2013, 5, 9651 DOI: 10.1039/C3NR03321J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements