Issue 23, 2013

Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics

Abstract

Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg−1 and up to 22 727.3 W kg−1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.

Graphical abstract: Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2013
Accepted
16 Sep 2013
First published
23 Sep 2013

Nanoscale, 2013,5, 11733-11741

Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics

W. Chen, Y. He, X. Li, J. Zhou, Z. Zhang, C. Zhao, C. Gong, S. Li, X. Pan and E. Xie, Nanoscale, 2013, 5, 11733 DOI: 10.1039/C3NR03923D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements