Issue 6, 2013

Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

Abstract

The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100–200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy.

Graphical abstract: Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2012
Accepted
14 Jan 2013
First published
18 Jan 2013

Nanoscale, 2013,5, 2328-2336

Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

V. Saxena, A. Diaz, A. Clearfield, J. D. Batteas and M. D. Hussain, Nanoscale, 2013, 5, 2328 DOI: 10.1039/C3NR34242E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements