Issue 28, 2013

The use of effective fragment potentials in the design and synthesis of molecularly imprinted polymers for the group recognition of PCBs

Abstract

Effective fragment potential (EFP) molecular modeling approaches have been applied for the first time to the rational design of molecularly imprinted polymers for the group recognition of selected polychlorinated biphenyls (PCBs). EFP calculations were benchmarked using the S22 compound test set and returned energies within 1 kcal mol−1 of the reported gold standard CCSD(T) approach, but without the computational cost. EFP allowed the rapid identification of trimethylstyrene (TMS) and pentafluorostyrene (PFS) as the functional monomers of choice for the templates (T) 1,2,3,4,5-pentachlorobenzene (4) and for 1,2,3-trichlorobenzne (5) respectively. Ethyleneglycol dimethacrylate was the cross linker (CL) of choice. Using a 1 : 2 : 10 (T : FM : CL) ratio for 4 (TMS as the FM; MIP4-TMS4-TMS4-TMS) gave imprinting factors (IF) of 2.1; and a 15 : 6 : 29 ratio for 5 gave an IF of 3.66 (PFS as FM; MIP5-PFS5-PFS). MIP4-TMS4-TMS4-TMS and MIP5-PFS5-PFS showed low levels recognition for non-chlorinated templates with IF values ranging of 1.05, 1.17 and 1.13, 1.54 for toluene (14) and 2,6-dimethylaniline (12) respectively. Higher levels of recognition were observed for the chlorinated analogues 1,3,5-trichlorobenzene (11) and 2,4,6-trichloroaniline (12) with IF values of 1.20, 1.64 and 1.89, 2.66 for MIP4-TMS4-TMS4-TMS and MIP5-PFS5-PFS respectively suggesting these MIPs were suitable for fragment imprinting of PCBs. Fragment imprinting of 2,2′,3,5′-tetrachlorobiphenyl (15), 2,3,3′,4,4′-pentachlorobiphenyl (16) and 2,2′,3,3′,4,5,6′-heptachlorobiphenyl (17) with MIP4-TMS4-TMS4-TMS gave IF values of 1.38, 1.38 and 1.41 respectively. MIP5-PFS5-PFS performed significantly better with IF values of 6.57, 3.46 and 5.80 for 15–17 respectively. Moreover MIP5-PFS5-PFS displayed a higher binding capacity than MIP4-TMS4-TMS4-TMS and was less susceptible to non-specific binding influences.

Graphical abstract: The use of effective fragment potentials in the design and synthesis of molecularly imprinted polymers for the group recognition of PCBs

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2012
Accepted
22 May 2013
First published
23 May 2013

Org. Biomol. Chem., 2013,11, 4646-4656

The use of effective fragment potentials in the design and synthesis of molecularly imprinted polymers for the group recognition of PCBs

D. Cleland and A. McCluskey, Org. Biomol. Chem., 2013, 11, 4646 DOI: 10.1039/C3OB27168D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements