Issue 22, 2013

Proline catalyzed sequential α-aminooxylation or -amination/reductive cyclization of o-nitrohydrocinnamaldehydes: a high yield synthesis of chiral 3-substituted tetrahydroquinolines

Abstract

A new sequential organocatalytic method for the synthesis of chiral 3-substituted (X = OH, NH2) tetrahydroquinoline derivatives (THQs) [ee up to 99%, yield up to 87%] based on α-aminooxylation or -amination followed by reductive cyclization of o-nitrohydrocinnamaldehydes has been described. This methodology has been efficiently demonstrated in the synthesis of two important bioactive molecules namely (−)-sumanirole (96% ee) and 1-[(S)-3-(dimethylamino)-3,4-dihydro-6,7-dimethoxy-quinolin-1(2H)-yl]propanone (92% ee).

Graphical abstract: Proline catalyzed sequential α-aminooxylation or -amination/reductive cyclization of o-nitrohydrocinnamaldehydes: a high yield synthesis of chiral 3-substituted tetrahydroquinolines

Supplementary files

Article information

Article type
Communication
Submitted
13 Feb 2013
Accepted
24 Apr 2013
First published
25 Apr 2013

Org. Biomol. Chem., 2013,11, 3608-3611

Proline catalyzed sequential α-aminooxylation or -amination/reductive cyclization of o-nitrohydrocinnamaldehydes: a high yield synthesis of chiral 3-substituted tetrahydroquinolines

V. Rawat, B. S. Kumar and A. Sudalai, Org. Biomol. Chem., 2013, 11, 3608 DOI: 10.1039/C3OB40320C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements