Polypyrrole–silver composites prepared by the reduction of silver ions with polypyrrole nanotubes
Abstract
Polypyrrole nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in the presence of methyl orange. They were subsequently used for the reduction of silver ions to silver nanoparticles. The nanotubular form of polypyrrole is compared with the classical globular morphology in its ability to reduce silver ions. Both polypyrrole salts and bases were used in the experiments. The content of metallic silver in the resulting composite, determined by thermogravimetric analysis, was 21–31 wt%. Elemental composition is also discussed on the basis of energy-dispersive X-ray spectroscopy. Contrary to the expectation, the conductivity of polypyrrole nanotubes in salt form, 35.7 S cm−1, was reduced to 20.9 S cm−1 after the incorporation of silver. The presence of silver had generally little effect on the conductivity. The temperature dependence of conductivity reveals that the composites maintain the semiconducting character of polypyrrole and their conductivity increased with increasing temperature. The conductivity of the composites surprisingly increased when the samples were placed in vacuo.