3-D nanorod arrays of metal–organic KTCNQ semiconductor on textiles for flexible organic electronics†
Abstract
We present a facile and low temperature approach for the fabrication of flexible organic electronic devices by growing high aspect ratio nanorod arrays of potassium 7,7,8,8-tetracyanoquinodimethane (KTCNQ), a crystalline organic semiconductor with charge transfer capabilities, on cotton threads interwoven within the three-dimensional (3-D) matrix of a cotton textile. We demonstrate the capability of this material in developing opto-electronic switches and gas sensors. The ability to grow KTCNQ nanorod arrays in a radial symmetry directly on textiles as a versatile 3-D microtemplate can be extended to the synthesis of a variety of metal–organic charge transfer complexes onto different flexible substrates that can find applications in electronics, catalysis and sensing.