Issue 8, 2013

Programmable multilayers of nanometer-sized macrocycles on solid support and stimuli-controlled on-surface pseudorotaxane formation

Abstract

Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes are capable of mechanical motion on the nanoscale and are therefore promising prototypes for molecular machines in recent nanotechnology. However, most of the existing examples are isotropically distributed in solution, which prohibits concerted movement and with it the generation of macroscopic effects. Thus, arranging them in ordered arrays is of huge interest in recent research. We report the deposition of quite densely packed multilayers of tetralactam macrocycles on gold surfaces by metal-coordinated layer-by-layer self-assembly. Linear dichroism effects in angle-resolved NEXAFS spectra indicate a preferential orientation of the macrocycles. The sequence of the metal ions can be programmed by the use of different transition metal ions at each deposition step. Additionally, reversible on-surface pseudorotaxane formation was successfully realized by repeated uptake and release of axle molecules inside the macrocycles cavities.

Graphical abstract: Programmable multilayers of nanometer-sized macrocycles on solid support and stimuli-controlled on-surface pseudorotaxane formation

Supplementary files

Article information

Article type
Edge Article
Submitted
26 Feb 2013
Accepted
14 May 2013
First published
15 May 2013

Chem. Sci., 2013,4, 3131-3139

Programmable multilayers of nanometer-sized macrocycles on solid support and stimuli-controlled on-surface pseudorotaxane formation

J. Poppenberg, S. Richter, C. H.-H. Traulsen, E. Darlatt, B. Baytekin, T. Heinrich, P. M. Deutinger, K. Huth, W. E. S. Unger and C. A. Schalley, Chem. Sci., 2013, 4, 3131 DOI: 10.1039/C3SC50558H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements