Issue 9, 2013

Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics

Abstract

A heteroatom-containing organic fluorophore 1-(4-pyridinyl)-1-phenyl-2-(9-carbazolyl)ethene (CP3E) was designed and synthesized. CP3E exhibits the effect of intramolecular charge transfer (ICT) caused by the donor–acceptor interaction between its carbazole and pyridine units. Whereas it emits faintly in solution, it becomes a strong emitter in the aggregated state, demonstrating the phenomenon of aggregation-induced emission (AIE). Its emission can be reversibly switched between blue and dark states by repeated protonation and deprotonation. Such behaviour enables it to work as a fluorescent pH sensor in both solution and the solid state and as a chemosensor for detecting acidic and basic organic vapors. Analyses by NMR spectroscopy, single-crystal X-ray diffraction and computational calculations suggest that the change in electron affinity of the pyridinyl unit and molecular conformation of CP3E upon protonation and deprotonation is responsible for such sensing processes.

Graphical abstract: Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Mar 2013
Accepted
05 Jul 2013
First published
05 Jul 2013

Chem. Sci., 2013,4, 3725-3730

Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics

Z. Yang, W. Qin, J. W. Y. Lam, S. Chen, H. H. Y. Sung, I. D. Williams and B. Z. Tang, Chem. Sci., 2013, 4, 3725 DOI: 10.1039/C3SC50648G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements