Issue 9, 2013

Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties

Abstract

The incorporation of amphiphilic tetrapyrrole macrocycles in organized media is of great value for a variety of fundamental photochemical studies, yet work to date has chiefly employed porphyrins rather than chlorins or bacteriochlorins. The latter absorb strongly in the red or near-infrared spectral region, respectively. Here, eight amphiphilic macrocycles (six chlorins and two bacteriochlorins) have been designed, synthesized and characterized; the compounds differ in long wavelength absorption (610–745 nm) and peripheral substituents (type of auxochrome, hydrophobic/hydrophilic groups). A methyl pyridinium or benzoic acid substituent at the 15-position provides a polar “tail” whereas a hydrophobic group distal thereto (in the chlorins) provides a lipophilic “head” for the spontaneous incorporation in organized media. The eight (bacterio)chlorins are characterized by static and time-resolved absorption and fluorescence spectroscopy in N,N-dimethylformamide (DMF) and three micellar environments (TX-100, CTAB, and SDS) as well as ultrafast transient absorption studies in DMF. In most cases, a long-lived excited singlet state was observed [free base chlorins (Φf = 0.14–0.20; τS = 7.9–12.1 ns; Φisc = 0.5), zinc chlorins (Φf = 0.08–0.19; τS = 2.0–3.4 ns; Φisc = 0.6–0.8) and free base bacteriochlorins (Φf = 0.06–0.16; τS = 1.8–4.6 ns; Φisc = 0.4)]. In the case of bacteriochlorins, minimal medium dependence was observed whereas changing the hydrophilic group from methyl pyridinium to benzoic acid increases the fluorescence yield and excited-state lifetime by 50%. In the case of chlorins, the zinc chelate with methyl pyridinium substitution exhibits substantial environmental dependence due to interaction of the solvent with the methyl pyridinium group and the central zinc metal. Collectively, the studies provide valuable information for the design of red or near-infrared absorbing chromophores for incorporation into amphiphilic environments such as micelles, membranes, or proteins.

Graphical abstract: Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties

Article information

Article type
Edge Article
Submitted
13 May 2013
Accepted
12 Jun 2013
First published
24 Jun 2013

Chem. Sci., 2013,4, 3459-3477

Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties

K. Aravindu, O. Mass, P. Vairaprakash, J. W. Springer, E. Yang, D. M. Niedzwiedzki, C. Kirmaier, D. F. Bocian, D. Holten and J. S. Lindsey, Chem. Sci., 2013, 4, 3459 DOI: 10.1039/C3SC51335A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements