Issue 1, 2013

Synthesis of new enzymatically degradable thermo-responsive nanogels

Abstract

Two new families of thermo-responsive and enzymatically degradable nanogels were synthesized by batch emulsion polymerization of N-vinylcaprolactam (VCL) with dextran methacrylates (Dex-MA) with different degrees of substitution (DS). The first family was prepared using different amounts of Dex-MA with high DS forming highly cross-linked nanogel particles with the typical thermal behavior of PVCL-based nanogels: below the volume phase transition temperature (VPTT) nanogel particles were swollen and above it they were collapsed. After their enzymatic degradation with dextranase, nanogel particles swelled due to the cleavage of some glucopyranosyl bonds of dextran, but preserved their identity. On the other hand, the second family was prepared using different amounts of Dex-MA with low DS forming slightly cross-linked nanogel particles with an anomalous thermal behavior. Surprisingly, above the VPTT of the nanogel particles monodisperse interparticle reversible aggregates were formed. In addition, after their enzymatic degradation, a release of reducing sugars together with an intense de-swelling due to the fragmentation of the nanogel structure was observed. Both nanogel families could be suitable for drug delivery in tissues or organs where dextranase is present.

Graphical abstract: Synthesis of new enzymatically degradable thermo-responsive nanogels

Article information

Article type
Paper
Submitted
30 Jul 2012
Accepted
24 Sep 2012
First published
17 Oct 2012

Soft Matter, 2013,9, 261-270

Synthesis of new enzymatically degradable thermo-responsive nanogels

G. Aguirre, J. Ramos and J. Forcada, Soft Matter, 2013, 9, 261 DOI: 10.1039/C2SM26753E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements