Modelling unidirectional liquid spreading on slanted microposts
Abstract
A lattice Boltzmann algorithm is used to simulate the slow spreading of drops on a surface patterned with slanted micro-posts. Gibb's pinning of the interface on the sides or top of the posts leads to unidirectional spreading over a wide range of contact angles and inclination angles of the posts. Regimes for spreading in no, one or two directions are identified, and shown to agree well with a two-dimensional theory proposed in Chu, Xiao and Wang. A more detailed numerical analysis of the contact line shapes allows us to understand deviations from the two dimensional model, and to identify the shapes of the pinned interfaces.
- This article is part of the themed collection: Emerging Investigators