Issue 29, 2013

Quiescent bilayers at the mica–water interface

Abstract

Despite extensive studies with many experimental techniques, the morphology and structure of the self-assembled aggregates of quaternary alkyl ammonium bromides (CnTABs; where n denotes the number of hydrocarbons in the surfactant tail) at the solid–liquid interface remains controversial, with results from atomic force microscopy (AFM) imaging pointing to a variety of surface aggregates such as cylinders and surface micelles, whilst surface force measurements and neutron reflectivity (NR) measurements reporting bilayer structures. Using a home-built liquid cell that employs the “bending mica” method, we have performed unprecedented synchrotron X-ray reflectometry (XRR) measurements to study the adsorption behaviour of a CnTAB series (n = 10, 12, 14, 16 and 18) at the mica–water interface at different surfactant concentrations. We find that our XRR data cannot be described by surface aggregates such as cylindrical and spherical structures reported by AFM studies. In addition we have observed that the bilayer thickness, surface coverage and the tilt angle all depend on the surfactant concentration and surfactant hydrocarbon chain length n, and that the bilayer thickness reaches a maximum value at approximately the critical micellisation concentration (∼1 cmc) for all the CnTABs investigated. We propose that CnTABs form disordered bilayer structures on mica at concentrations below cmc, whilst at ∼1 cmc they form more densely packed bilayers with the tails possibly tilted at an angle θt ranging from ∼40 to 60° with respect to the surface normal in order to satisfy the packing constraints due to the mica lattice charge, i.e. so that the cross-section area of the tilted chain would match that of the area of the lattice charge (As ≅ 46.8 Å2). As the surfactant concentration further increases, we find that the bilayer thickness decreases, and we ascribe this to the desorption of surfactant molecules, which recovers certain disorder and fluidity in the chain and thus leads to interdigitated bilayers again. In light of our XRR results, previously unattainable at the mica–water interface, we suggest that the surface aggregates observed by AFM could be induced by the interaction between the scanning probe and the surfactant layer, thus representing transient surface aggregation morphologies; whereas the CnTAB bilayers we observe with XRR are intrinsic structures under quiescent conditions. The suggestion of such quiescent bilayers will have fundamental implications to processes such as lubrication, self-assembly under confinement, detergency and wetting, where the morphology and structure of surfactant layers at the solid–liquid interface is an important consideration.

Graphical abstract: Quiescent bilayers at the mica–water interface

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2013
Accepted
25 Apr 2013
First published
02 May 2013

Soft Matter, 2013,9, 7028-7041

Quiescent bilayers at the mica–water interface

F. Speranza, G. A. Pilkington, T. G. Dane, P. T. Cresswell, P. Li, R. M. J. Jacobs, T. Arnold, L. Bouchenoire, R. K. Thomas and W. H. Briscoe, Soft Matter, 2013, 9, 7028 DOI: 10.1039/C3SM50336D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements