A study of extensional flow induced coalescence in microfluidic geometries with lateral channels†
Abstract
The coupled mechanisms of extensional coalescence and subsequent shape relaxation can lead to catastrophic destabilization of moderately concentrated emulsions. We demonstrate that application of local extensional flow through the use of small lateral channels allows controlled, systematic investigation of both single drop pair and propagating (avalanche) coalescence through a chain of drops. Drop–drop collisions and separations were controlled independently, and did not significantly disturb the primary flow. The probability of the first coalescence event was controlled by bulk flow parameters, allowing for systematic investigation of these phenomena. Simulations with COMSOL® were used in order to quantify and thus validate various assumptions relating to the flow characteristics of our setup. For the configurations tested, the droplet pair separation speed increased linearly with the lateral channel infusion rate. Flows were laminar and collision conditions remained stable until a first coalescence event between a pair of drops was triggered by the superposed local extensional flow field close to the lateral channels. Results are described in terms of coalescence probability versus