Issue 1, 2013

An ester-functionalized diketopyrrolopyrrole molecule with appropriate energy levels for application in solution-processed organic solar cells

Abstract

For highly efficient organic solar cells (OSCs), the electron donor should possess not only a narrow band gap (Eg) but also a low highest occupied molecular orbital (HOMO) energy level. To achieve it, in this paper, we designed and synthesized a diketopyrrolopyrrole (DPP) derivative end capped with an ethyl thiophene-2-carboxylate moiety, 3,6-bis{5-[(ethyl thiophene-2-carboxylate)-2-yl]thiophene-2-yl}-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP(CT)2). Through UV-vis absorption and cyclic voltammetry (CV) measurements, we demonstrated that the resulting molecule exhibits both a low optical Eg of 1.65 eV and a lower-lying HOMO energy level of −5.33 eV owing to the electronegativity of the ester group and the conjugation effect of the thiophene ring. Therefore, when DPP(CT)2 is used as the electron donor to blend with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) for solution processable OSCs, a power conversion efficiency (PCE) of 4.02% combined with an open-circuit voltage (VOC) as high as 0.94 V and a broad photovoltaic response range extending to around 750 nm is obtained.

Graphical abstract: An ester-functionalized diketopyrrolopyrrole molecule with appropriate energy levels for application in solution-processed organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2012
Accepted
26 Sep 2012
First published
27 Sep 2012

J. Mater. Chem. A, 2013,1, 105-111

An ester-functionalized diketopyrrolopyrrole molecule with appropriate energy levels for application in solution-processed organic solar cells

M. Chen, W. Fu, M. Shi, X. Hu, J. Pan, J. Ling, H. Li and H. Chen, J. Mater. Chem. A, 2013, 1, 105 DOI: 10.1039/C2TA00148A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements