Issue 5, 2013

Catalytically healing the Stone–Wales defects in graphene by carbon adatoms

Abstract

Graphene with a perfect hexagonal network structure is desirable for various reasons, e.g., mechanical, thermal conductivity and transport properties. Yet, the embedded defects generated either in synthesis or usage stages have posed obstacles for graphene applications. Therefore, removal of the structural defects in graphene has remained an important task. Stone–Wales (SW) defects are one typical topological structure in the carbon nanomaterials. Unfortunately, the SW defects in graphene have to overcome a very high restoration barrier (ca. 6 eV). Very recent theoretical work has shown the promise to reduce the restoration barrier by the adsorbed transition metal atoms down to 2.86 eV (for W) (yet this is still too high). In the present density functional theory (DFT) study, we find that through a mechanically different process, the adsorption of carbon atoms can dramatically reduce the restoration barrier to hitherto the lowest value, i.e., 20.0 kcal mol−1 (0.87 eV), which could make the SW-healing experimentally accessible. Subsequently, the C-adatom can migrate very easily on the graphene surface. As a result, one carbon adatom could principally catalyze the healing of all the SW defects in a cascade mode if no termination steps exist. During the graphene growth, the presently proposed carbon-adatom catalytic mechanism could have played a role in healing the SW defect. Moreover, we propose that in the post-treatment of graphene, adsorption of the carbon adatom could be used as an effective catalyst for the SW-healing. The catalytic role of carbon atoms on the SW defect should be included in the modeling of graphene growth.

Graphical abstract: Catalytically healing the Stone–Wales defects in graphene by carbon adatoms

Article information

Article type
Paper
Submitted
17 Oct 2012
Accepted
30 Nov 2012
First published
03 Dec 2012

J. Mater. Chem. A, 2013,1, 1885-1891

Catalytically healing the Stone–Wales defects in graphene by carbon adatoms

C. Wang and Y. Ding, J. Mater. Chem. A, 2013, 1, 1885 DOI: 10.1039/C2TA00736C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements