Issue 15, 2013

Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector

Abstract

We demonstrate a facile and effective way for the fabrication of a flexible, homogeneous and neat α-MoO3 thin-film electrode for lithium-ion batteries with high performance without using any binder and conductive additives. Single-crystalline α-MoO3 nanobelts with uniform width of around 200 nm and length at the micrometer level are first synthesized by a simple water-based hydrothermal route. The as-obtained α-MoO3 slurry is then directly deposited onto a copper foil current collector by the doctor blade method. The formation of the α-MoO3 film and its good adhesion to the current collector is realized via van der Waals attraction forces through a drying process. The structure and morphology of the α-MoO3 nanobelt particles and thin-film electrode are systematically characterized by XRD, Raman spectra, TEM, SEM and XPS techniques, and the electrochemical properties are investigated by CV and constant current discharge–charge test techniques. The α-MoO3 film electrode exhibits a reversible specific capacity of ∼1000 mA h g−1 at 50 mA g−1 and a stable capacity retention of 387–443 mA h g−1 at 2000 mA g−1, indicating its high Li storage capacity, superior rate performance and good cycling stability. The electrode material, as well as the fabrication technique, is highly promising for practical use in high energy and power density lithium-ion batteries.

Graphical abstract: Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector

Supplementary files

Article information

Article type
Paper
Submitted
28 Nov 2012
Accepted
06 Feb 2013
First published
07 Feb 2013

J. Mater. Chem. A, 2013,1, 4736-4746

Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector

Y. Sun, J. Wang, B. Zhao, R. Cai, R. Ran and Z. Shao, J. Mater. Chem. A, 2013, 1, 4736 DOI: 10.1039/C3TA01285A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements