Issue 21, 2013

Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes

Abstract

Polymeric carbon nitride (g-C3N4) films were synthesized on polycrystalline semiconductor CuInS2 chalcopyrite thin film electrodes by thermal polycondensation and were investigated as photocathodes for the hydrogen evolution reaction (HER) under photoelectrochemical conditions. The composite photocathode materials were compared to g-C3N4 powders and were characterized with grazing incidence X-ray diffraction and X-ray photoemission spectroscopy as well as Fourier transform infrared and Raman spectroscopies. Surface modification of polycrystalline CuInS2 semiconducting thin films with photocatalytically active g-C3N4 films revealed structural and chemical properties corresponding to the properties of g-C3N4 powders. The g-C3N4/CuInS2 composite photocathode material generates a cathodic photocurrent at potentials up to +0.36 V vs. RHE in 0.1 M H2SO4 aqueous solution (pH 1), which corresponds to a +0.15 V higher onset potential of cathodic photocurrent than the unmodified CuInS2 semiconducting thin film photocathodes. The cathodic photocurrent for the modified composite photocathode materials was reduced by almost 60% at the hydrogen redox potential. However, the photocurrent generated from the g-C3N4/CuInS2 composite electrode was stable for 22 h. Therefore, the presence of the polymeric g-C3N4 films composed of a network of nanoporous crystallites strongly protects the CuInS2 semiconducting substrate from degradation and photocorrosion under acidic conditions. Conversion of visible light to hydrogen by photoelectrochemical water splitting can thus be successfully achieved by g-C3N4 films synthesized on polycrystalline CuInS2 chalcopyrite electrodes.

Graphical abstract: Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes

Article information

Article type
Paper
Submitted
23 Jan 2013
Accepted
27 Mar 2013
First published
27 Mar 2013

J. Mater. Chem. A, 2013,1, 6407-6415

Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes

F. Yang, V. Kuznietsov, M. Lublow, C. Merschjann, A. Steigert, J. Klaer, A. Thomas and T. Schedel-Niedrig, J. Mater. Chem. A, 2013, 1, 6407 DOI: 10.1039/C3TA10360A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements