Issue 40, 2013

Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid

Abstract

Chemical crosslinking of collagen is a general strategy to reproduce macroscale tissue properties in physiological environment. However, simultaneous control of protein conformation, material properties and biofunctionality is highly challenging with current synthetic strategies. Consequently, the potentially-diverse clinical applications of collagen-based biomaterials cannot be fully realised. In order to establish defined biomacromolecular systems for mineralised tissue applications, type I collagen was functionalised with 1,3-phenylenediacetic acid (Ph) and investigated at the molecular, macroscopic and functional levels. Preserved triple helix conformation was observed in obtained covalent networks via ATR-FTIR (AIII/A1450 ∼ 1) and WAXS, while network crosslinking degree (C: 87–99 mol%) could be adjusted based on specific reaction conditions. Decreased swelling ratio (SR: 823–1285 wt%) and increased thermo-mechanical (Td: 80–88 °C; E: 28–35 kPa; σmax: 6–8 kPa; εb: 53–58%) properties were observed compared to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls, likely related to the intermolecular covalent incorporation of the aromatic segment. Ph-crosslinked hydrogels displayed nearly intact material integrity and only a slight mass decrease (MR: 5–11 wt%) following 1 week incubation in either PBS or simulated body fluid (SBF), in contrast to EDC-crosslinked collagen (MR: 33–58 wt%). Furthermore, FTIR, SEM and EDS revealed deposition of a calcium–phosphate phase on SBF-retrieved samples, whereby an increased calcium phosphate ratio (Ca/P: 0.84–1.41) was observed in hydrogels with higher Ph content. 72 hours material extracts were well tolerated by L929 mouse fibroblasts, whereby cell confluence and metabolic activity (MTS assay) were comparable to those of cells cultured in cell culture medium (positive control). In light of their controlled structure–function properties, these biocompatible collagen hydrogels represent attractive material systems for potential mineralised tissue applications.

Graphical abstract: Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid

Article information

Article type
Paper
Submitted
15 Feb 2013
Accepted
23 Aug 2013
First published
23 Aug 2013

J. Mater. Chem. B, 2013,1, 5478-5488

Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid

G. Tronci, A. Doyle, S. J. Russell and D. J. Wood, J. Mater. Chem. B, 2013, 1, 5478 DOI: 10.1039/C3TB20218F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements